Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 21(214): 20240008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715319

RESUMEN

Multicellular organisms grow and acquire their shapes through the differential expansion and deformation of their cells. Recent research has addressed the role of cell and tissue mechanical properties in these processes. In plants, it is believed that growth rate is a function of the mechanical stress exerted on the cell wall, the thin polymeric layer surrounding cells, involving an effective viscosity. Nevertheless, recent studies have questioned this view, suggesting that cell wall elasticity sets the growth rate or that uptake of water is limiting for plant growth. To assess these issues, we developed a microfluidic device to quantify the growth rates, elastic properties and hydraulic conductivity of individual Marchantia polymorpha plants in a controlled environment with a high throughput. We characterized the effect of osmotic treatment and abscisic acid on growth and hydromechanical properties. Overall, the instantaneous growth rate of individuals is correlated with both bulk elastic modulus and hydraulic conductivity. Our results are consistent with a framework in which the growth rate is determined primarily by the elasticity of the wall and its remodelling, and secondarily by hydraulic conductivity. Accordingly, the coupling between the chemistry of the cell wall and the hydromechanics of the cell appears as key to set growth patterns during morphogenesis.


Asunto(s)
Pared Celular , Pared Celular/fisiología , Marchantia/crecimiento & desarrollo , Marchantia/fisiología , Ácido Abscísico/metabolismo , Modelos Biológicos , Fenómenos Biomecánicos , Desarrollo de la Planta/fisiología
2.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629612

RESUMEN

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Asunto(s)
Miosinas , Células Vegetales , Miosinas/metabolismo , Células Vegetales/metabolismo , Bryopsida/metabolismo , Bryopsida/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/crecimiento & desarrollo , Desarrollo de la Planta/fisiología
3.
Plant Cell ; 34(1): 228-246, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34459922

RESUMEN

Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.


Asunto(s)
Evolución Biológica , Bryopsida/fisiología , Polaridad Celular , Ácidos Indolacéticos/metabolismo , Marchantia/fisiología , Células Vegetales/fisiología , Transporte Biológico , Bryopsida/crecimiento & desarrollo , Biología Celular , División Celular , Aumento de la Célula , Biología Evolutiva , Marchantia/crecimiento & desarrollo , Organogénesis de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo
4.
Curr Biol ; 31(16): 3678-3686.e11, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34214451

RESUMEN

Plant survival depends on the optimal use of resources under variable environmental conditions. Among the mechanisms that mediate the balance between growth, differentiation, and stress responses, the regulation of transcriptional activity by DELLA proteins stands out. In angiosperms, DELLA accumulation promotes defense against biotic and abiotic stress and represses cell division and expansion, while the loss of DELLA function is associated with increased plant size and sensitivity toward stress.1 Given that DELLA protein stability is dependent on gibberellin (GA) levels2 and GA metabolism is influenced by the environment,3 this pathway is proposed to relay environmental information to the transcriptional programs that regulate growth and stress responses in angiosperms.4,5 However, DELLA genes are also found in bryophytes, whereas canonical GA receptors have been identified only in vascular plants.6-10 Thus, it is not clear whether these regulatory functions of DELLA predated or emerged with typical GA signaling. Here, we show that, as in vascular plants, the only DELLA in the liverwort Marchantia polymorpha also participates in the regulation of growth and key developmental processes and promotes oxidative stress tolerance. Moreover, part of these effects is likely caused by the conserved physical interaction with the MpPIF transcription factor. Therefore, we suggest that the role in the coordination of growth and stress responses was already encoded in the DELLA protein of the common ancestor of land plants, and the importance of this function is underscored by its conservation over the past 450 million years.


Asunto(s)
Giberelinas , Marchantia , Proteínas de Plantas/genética , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Marchantia/genética , Marchantia/crecimiento & desarrollo , Transducción de Señal , Factores de Transcripción
5.
PLoS Genet ; 17(6): e1009533, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34086675

RESUMEN

Tip-growth is a mode of polarized cell expansion where incorporation of new membrane and wall is stably restricted to a single, small domain of the cell surface resulting in the formation of a tubular projection that extends away from the body of the cell. The organization of the microtubule cytoskeleton is conserved among tip-growing cells of land plants: bundles of microtubules run longitudinally along the non-growing shank and a network of fine microtubules grow into the apical dome where growth occurs. Together, these microtubule networks control the stable positioning of the growth site at the cell surface. This conserved dynamic organization is required for the spatial stability of tip-growth, as demonstrated by the formation of sinuous tip-growing cells upon treatment with microtubule-stabilizing or microtubule-destabilizing drugs. Microtubule associated proteins (MAPs) that either stabilize or destabilize microtubule networks are required for the maintenance of stable tip-growth in root hairs of flowering plants. NIMA RELATED KINASE (NEK) is a MAP that destabilizes microtubule growing ends in the apical dome of tip-growing rhizoid cells in the liverwort Marchantia polymorpha. We hypothesized that both microtubule stabilizing and destabilizing MAPs are required for the maintenance of the stable tip-growth in liverworts. To identify genes encoding microtubule-stabilizing and microtubule-destabilizing activities we generated 120,000 UV-B mutagenized and 336,000 T-DNA transformed Marchantia polymorpha plants and screened for defective rhizoid phenotypes. We identified 119 mutants and retained 30 mutants in which the sinuous rhizoid phenotype was inherited. The 30 mutants were classified into at least 4 linkage groups. Characterisation of two of the linkage groups showed that MAP genes-WAVE DAMPENED2-LIKE (WDL) and NIMA-RELATED KINASE (NEK)-are required to stabilize the site of tip growth in elongating rhizoids. Furthermore, we show that MpWDL is required for the formation of a bundled array of parallel and longitudinally orientated microtubules in the non-growing shank of rhizoids where MpWDL-YFP localizes to microtubule bundles. We propose a model where the opposite functions of MpWDL and MpNEK on microtubule bundling are spatially separated and promote tip-growth spatial stability.


Asunto(s)
Marchantia/crecimiento & desarrollo , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Alelos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Marchantia/genética , Mutación
6.
Sci Rep ; 11(1): 10054, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980894

RESUMEN

We recently isolated a novel adenylyl cyclase/cAMP phosphodiesterase gene from the liverwort, Marchantia polymorpha. The protein encoded by this gene has a class III adenylyl cyclase (AC) in the C-terminal domain and class I phosphodiesterase (PDE) in the N-terminal domain; therefore, we named it CAPE (COMBINED AC with PDE). CAPE protein is likely involved in spermatogenesis and sperm motility due to its tissue-specific expression pattern in M. polymorpha and the distribution of CAPE genes in streptophytes. However, little is known about the distribution of CAPE in gymnosperms that use motile sperm for fertilization, such as cycads and ginkgo. The present study aimed to isolate CAPE genes from the cycad, Cycas revoluta, the ginkgo, Ginkgo biloba, and the hornwort, Anthoceros agerestis. Sequences with high homology to CAPE were obtained from these species. Our analyses revealed that all plant taxonomic groups reproducing via motile sperm possessed CAPE, whereas those that do not produce motile sperm did not possess CAPE, with one exception in gymnosperm Cupressales. The phylogenic distribution of CAPE almost corresponds to the evolutionary history of motile sperm production and further suggests that CAPE may be involved in sexual reproduction process using motile sperm in streptophytes.


Asunto(s)
Adenilil Ciclasas/metabolismo , Evolución Biológica , Gametogénesis en la Planta , Marchantia/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas de Plantas/metabolismo , Espermatogénesis , Adenilil Ciclasas/genética , AMP Cíclico/metabolismo , Regulación de la Expresión Génica de las Plantas , Marchantia/genética , Marchantia/crecimiento & desarrollo , Hidrolasas Diéster Fosfóricas/genética , Proteínas de Plantas/genética
7.
Methods Mol Biol ; 2317: 333-341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028780

RESUMEN

We describe a simple and efficient plastid transformation method for the liverwort, Marchantia polymorpha L. Use of rapidly proliferating cells such as sporelings, which are immature thalli developing from spores, as targets made plastid transformation by particle bombardment efficient. Selection on a sucrose-free medium and linearization of the transformation vector significantly improved the recovery rate of plastid transformants. With the method described here, a few plastid transformants are obtained from a single bombardment of sporelings. Homoplasmic transformants of thalli are obtained immediately after primary selection.


Asunto(s)
Ingeniería Genética/métodos , Marchantia/genética , Plantas Modificadas Genéticamente/genética , Plastidios/genética , Esporas/genética , Transformación Genética , Marchantia/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Esporas/crecimiento & desarrollo
8.
Methods Mol Biol ; 2317: 343-365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028781

RESUMEN

The bryophyte Marchantia polymorpha , has attracted significant attention as a powerful experimental system for studying aspects of plant biology including synthetic biology applications. We describe an efficient and simple recursive Type IIS DNA assembly method for the generation of DNA constructs for chloroplast genome manipulation, and an optimized technique for Marchantia chloroplast genome transformation. The utility of the system was demonstrated by the expression of a chloroplast codon-optimized cyan fluorescent protein.


Asunto(s)
Cloroplastos/genética , ADN de Plantas/genética , Ingeniería Genética/métodos , Marchantia/genética , Plantas Modificadas Genéticamente/genética , Transformación Genética , ADN de Plantas/metabolismo , Marchantia/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Biología Sintética
9.
Plant Cell Physiol ; 62(5): 858-871, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33768225

RESUMEN

Ethylene is a gaseous phytohormone involved in various physiological processes, including fruit ripening, senescence, root hair development and stress responses. Recent genomics studies have suggested that most homologous genes of ethylene biosynthesis and signaling are conserved from algae to angiosperms, whereas the function and biosynthesis of ethylene remain unknown in basal plants. Here, we examined the physiological effects of ethylene, an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) and an inhibitor of ethylene perception, silver thiosulfate (STS), in a basal land plant, Marchantia polymorpha. M. polymorpha plants biosynthesized ethylene, and treatment with high concentrations of ACC slightly promoted ethylene production. ACC remarkably suppressed the growth of thalli (vegetative organs) and rhizoids (root-hair-like cells), whereas exogenous ethylene slightly promoted thallus growth. STS suppressed thallus growth and induced ectopic rhizoid formation on the dorsal surface of thalli. Thus, ACC and ethylene have different effects on the vegetative growth of M. polymorpha. We generated single and double mutants of ACC synthase-like (ACSL) genes, MpACSL1 and MpACSL2. The mutants did not show obvious defects in thallus growth, ACC content and ethylene production, indicating that MpACSL genes are not essential for the vegetative growth and biosynthesis of ACC and ethylene. Gene expression analysis suggested the involvement of MpACSL1 and MpACSL2 in stress responses. Collectively, our results imply ethylene-independent function of ACC and the absence of ACC-mediated ethylene biosynthesis in M. polymorpha.


Asunto(s)
Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Marchantia/metabolismo , Aminoácidos Cíclicos/farmacología , Etilenos/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Marchantia/efectos de los fármacos , Marchantia/genética , Marchantia/crecimiento & desarrollo , Mutación , Compuestos Organofosforados/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiosulfatos/farmacología
10.
Development ; 148(5)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712444

RESUMEN

The phytohormone auxin plays a role in almost all growth and developmental responses. The primary mechanism of auxin action involves the regulation of transcription via a core signaling pathway comprising proteins belonging to three classes: receptors, co-receptor/co-repressors and transcription factors. Recent studies have revealed that auxin signaling can be traced back at least as far as the transition to land. Moreover, studies in flowering plants have highlighted how expansion of the gene families encoding auxin components is tied to functional diversification. As we review here, these studies paint a picture of auxin signaling evolution as a driver of innovation.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Carofíceas/crecimiento & desarrollo , Carofíceas/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Marchantia/crecimiento & desarrollo , Marchantia/metabolismo , Desarrollo de la Planta/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
11.
Biochem Biophys Res Commun ; 534: 436-441, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246557

RESUMEN

The appropriate regulation of thylakoid lipid synthesis is essential for the function of chloroplasts. In plant cells, membrane lipids synthesized in the ER are utilized as a precursor for the synthesis of chloroplast glycolipids. This pathway is thought to be mediated by the transport of glycerolipids synthesized in the ER into chloroplasts. However, we have little knowledge about the proteins involved in the lipid transfer between these organelles in plant cells. Here we show a protein, STAR2, containing the START (Steroidogenic acute regulatory protein-related lipid transfer) domain known to function as a lipid transporter, is involved in the incorporation of ER-derived fatty acids into chloroplast glycolipids in Marchantia polymorpha. We found that STAR2 localizes on the chloroplast envelope membrane as a punctuate structure and is required for the increase of C20 fatty acids, which are synthesized in the ER, in chloroplast glycolipids in response to phosphate deprivation. Our results indicate that STAR2 of M. polymorpha is likely to be involved in the lipid transfer from ER to chloroplast, presumably as a lipid transporter.


Asunto(s)
Cloroplastos/metabolismo , Ácidos Grasos/metabolismo , Glucolípidos/metabolismo , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Vías Biosintéticas , Marchantia/crecimiento & desarrollo , Marchantia/ultraestructura , Fosfatos/metabolismo , Proteínas de Plantas/análisis
12.
Sci Rep ; 10(1): 8658, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457350

RESUMEN

The circadian clock coordinates an organism's growth, development and physiology with environmental factors. One illuminating example is the rhythmic growth of hypocotyls and cotyledons in Arabidopsis thaliana. Such daily oscillations in leaf position are often referred to as sleep movements or nyctinasty. Here, we report that plantlets of the liverwort Marchantia polymorpha show analogous rhythmic movements of thallus lobes, and that the circadian clock controls this rhythm, with auxin a likely output pathway affecting these movements. The mechanisms of this circadian clock are partly conserved as compared to angiosperms, with homologs to the core clock genes PRR, RVE and TOC1 forming a core transcriptional feedback loop also in M. polymorpha.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Marchantia/crecimiento & desarrollo , Marchantia/fisiología , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Marchantia/genética , Factores de Transcripción/genética
13.
Curr Biol ; 30(10): 1905-1915.e4, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32243863

RESUMEN

Lateral inhibition patterns differentiated cell types among equivalent cells during development in bacteria, metazoans, and plants. Tip-growing rhizoid cells develop among flat epidermal cells in the epidermis of the early-diverging land plant Marchantia polymorpha. We show that the majority of rhizoid cells develop individually, but some develop in linear, one-dimensional groups (chains) of between 2 and 7 rhizoid cells in wild-type plants. The distribution of rhizoid cells can be accounted for within a simple cellular automata model of lateral inhibition. The model predicted that in the absence of lateral inhibition, two-dimensional rhizoid cell groups (clusters) form. These can be larger than those formed with lateral inhibition. M. polymorpha rhizoid differentiation is positively regulated by the ROOT HAIR DEFECTIVE SIX-LIKE1 (MpRSL1) basic-helix-loop-helix (bHLH) transcription factor, which is directly repressed by the FEW RHIZOIDS1 (MpFRH1) microRNA (miRNA). To test if MpFRH1 miRNA acts during lateral inhibition, we generated loss-of-function (lof) mutants without the MpFRH1 miRNA. Two-dimensional clusters of rhizoids develop in Mpfrh1lof mutants as predicted by the model for plants that lack lateral inhibition. Furthermore, two-dimensional clusters of up to 9 rhizoid cells developed in the Mpfrh1lof mutants compared to a maximum number of 7 observed in wild-type groups. The higher steady-state levels of MpRSL1 mRNA in Mpfrh1lof mutants indicate that MpFRH1-mediated lateral inhibition involves the repression of MpRSL1 activity. Together, the modeling and genetic data indicate that MpFRH1 miRNA mediates lateral inhibition by repressing MpRSL1 during pattern formation in the M. polymorpha epidermis.


Asunto(s)
Marchantia/metabolismo , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , ARN de Planta/metabolismo , Sistemas CRISPR-Cas , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Marchantia/genética , Marchantia/crecimiento & desarrollo , MicroARNs/genética , Modelos Biológicos , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN de Planta/genética
14.
J Plant Res ; 133(3): 311-321, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32206925

RESUMEN

Bryophytes and vascular plants represent the broadest evolutionary divergence in the land plant lineage, and comparative analyses of development spanning this divergence therefore offer opportunities to identify truisms of plant development in general. In vascular plants, organs are formed repetitively around meristems at the growing tips in response to positional cues. In contrast, leaf formation in mosses and leafy liverworts occurs from clonal groups of cells derived from a daughter cell of the apical stem cell known as merophytes, and cell lineage is a crucial factor in repetitive organ formation. However, it remains unclear whether merophyte lineages are a general feature of repetitive organ formation in bryophytes as patterns of organogenesis in thalloid liverworts are unclear. To address this question, we developed a clonal analysis method for use in the thalloid liverwort Marchantia polymorpha, involving random low-frequency induction of a constitutively expressed nuclear-targeted fluorescent protein by dual heat-shock and dexamethasone treatment. M. polymorpha thalli ultimately derive from stem cells in the apical notch, and the lobes predominantly develop from merophytes cleft to the left and right of the apical cell(s). Sector induction in gemmae and subsequent culture occasionally generated fluorescent sectors that bisected thalli along the midrib and were maintained through several bifurcation events, likely reflecting the border between lateral merophytes. Such thallus-bisecting sectors traversed dorsal air chambers and gemma cups, suggesting that these organs arise independently of merophyte cell lineages in response to local positional cues.


Asunto(s)
Marchantia/crecimiento & desarrollo , Organogénesis de las Plantas , Hojas de la Planta/citología
15.
ACS Synth Biol ; 9(4): 864-882, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32163700

RESUMEN

We present the OpenPlant toolkit, a set of interlinked resources and techniques to develop Marchantia as testbed for bioengineering in plants. Marchantia is a liverwort, a simple plant with an open form of development that allows direct visualization of gene expression and dynamics of cellular growth in living tissues. We describe new techniques for simple and efficient axenic propagation and maintenance of Marchantia lines with no requirement for glasshouse facilities. Marchantia plants spontaneously produce clonal propagules within a few weeks of regeneration, and lines can be amplified million-fold in a single generation by induction of the sexual phase of growth, crossing, and harvesting of progeny spores. The plant has a simple morphology and genome with reduced gene redundancy, and the dominant phase of its life cycle is haploid, making genetic analysis easier. We have built robust Loop assembly vector systems for nuclear and chloroplast transformation and genome editing. These have provided the basis for building and testing a modular library of standardized DNA elements with highly desirable properties. We have screened transcriptomic data to identify a range of candidate genes, extracted putative promoter sequences, and tested them in vivo to identify new constitutive promoter elements. The resources have been combined into a toolkit for plant bioengineering that is accessible for laboratories without access to traditional facilities for plant biology research. The toolkit is being made available under the terms of the OpenMTA and will facilitate the establishment of common standards and the use of this simple plant as testbed for synthetic biology.


Asunto(s)
Edición Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Marchantia , Programas Informáticos , Biología Sintética/métodos , Cloroplastos/genética , ADN de Plantas/genética , ADN de Plantas/metabolismo , Genes de Plantas/genética , Marchantia/genética , Marchantia/crecimiento & desarrollo , Marchantia/fisiología , Transcriptoma/genética
16.
Cell ; 180(3): 427-439.e12, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004461

RESUMEN

Cell polarity is fundamental for tissue morphogenesis in multicellular organisms. Plants and animals evolved multicellularity independently, and it is unknown whether their polarity systems are derived from a single-celled ancestor. Planar polarity in animals is conferred by Wnt signaling, an ancient signaling pathway transduced by Dishevelled, which assembles signalosomes by dynamic head-to-tail DIX domain polymerization. In contrast, polarity-determining pathways in plants are elusive. We recently discovered Arabidopsis SOSEKI proteins, which exhibit polar localization throughout development. Here, we identify SOSEKI as ancient polar proteins across land plants. Concentration-dependent polymerization via a bona fide DIX domain allows these to recruit ANGUSTIFOLIA to polar sites, similar to the polymerization-dependent recruitment of signaling effectors by Dishevelled. Cross-kingdom domain swaps reveal functional equivalence of animal and plant DIX domains. We trace DIX domains to unicellular eukaryotes and thus show that DIX-dependent polymerization is an ancient mechanism conserved between kingdoms and central to polarity proteins.


Asunto(s)
Arabidopsis/química , Arabidopsis/citología , Polaridad Celular/fisiología , Células Vegetales/fisiología , Polimerizacion , Dominios Proteicos , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteína Axina/química , Proteína Axina/metabolismo , Bryopsida/química , Bryopsida/citología , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Células COS , Chlorocebus aethiops , Proteínas Dishevelled/metabolismo , Células HEK293 , Humanos , Marchantia/química , Marchantia/citología , Marchantia/genética , Marchantia/crecimiento & desarrollo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Plantas Modificadas Genéticamente , Proteínas Represoras/metabolismo , Vía de Señalización Wnt
17.
New Phytol ; 224(4): 1627-1641, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31433873

RESUMEN

TCP transcription factors are key regulators of angiosperm cell proliferation processes. It is unknown whether their regulatory growth capacities are conserved across land plants, which we examined in liverworts, one of the earliest diverging land plant lineages. We generated knockout mutants for MpTCP1, the single TCP-P clade gene in Marchantia polymorpha, and characterized its function by conducting cell proliferation and morphological analyses as well as messenger RNA expression, transcriptome, chemical, and DNA binding studies. Mptcp1ge lines show a reduced vegetative thallus growth and extra tissue formation in female reproductive structures. Additionally, mutant plants reveal increased hydrogen peroxide (H2 O2 ) levels and an enhanced pigmentation in the thallus caused by formation of secondary metabolites, such as aminochromes. MpTCP1 proteins interact redox dependently with DNA and regulate the expression of a comprehensive redox network, comprising enzymes involved in H2 O2 metabolism. MpTCP1 regulates Marchantia growth in a context-dependent manner. Redox sensitivity of the DNA binding capacity of MpTCP1 proteins provides a mechanism to respond to altered redox conditions. Our data suggest that MpTCP1 activity could thereby have contributed to diversification of land plant morphologies and to adaptations to abiotic and biotic challenges, as experienced by liverworts during early land plant colonization.


Asunto(s)
Marchantia/citología , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Adaptación Biológica , Proliferación Celular , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Indolquinonas/metabolismo , Marchantia/genética , Marchantia/crecimiento & desarrollo , Mutación , Oxidación-Reducción , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Nat Plants ; 5(7): 663-669, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31285561

RESUMEN

Extant bryophytes are thought to preserve characteristics of ancestral land plants, with a life cycle dominated by the haploid gametophyte. The gametophyte produces gametes in specialized organs that differentiate after an extensive phase of vegetative development. During land plant evolution, these organs became extremely reduced. As a result, in flowers of angiosperms the haploid phase of the life cycle is reduced to few-celled gametophytes, namely the embryo sac (female) and pollen (male). Although many factors contributing to gametogenesis have been identified in flowering plants, the extreme reduction of the gametophytes has prevented a clear molecular dissection of key processes of gametogenesis. Recent studies in the model bryophyte Marchantia polymorpha have identified conserved transcription factors regulating the equivalent steps in the sexual reproduction of land plants. These include FEMALE GAMETOPHYTE MYB for female gametophyte development, BONOBO for gamete progenitor cell specification, DUO POLLEN1 for sperm differentiation and members of the RWP-RK domain family for female gamete formation. These studies demonstrate that M. polymorpha is a powerful model to untangle the core processes of gametogenesis in land plants. We anticipate that a deeper understanding of gametogenesis in bryophytes will circumscribe the origin of plant germ cells and define the differentiation programmes of sperm and eggs.


Asunto(s)
Evolución Biológica , Gametogénesis en la Planta , Células Germinativas de las Plantas/crecimiento & desarrollo , Marchantia/metabolismo , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/metabolismo , Marchantia/genética , Marchantia/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
New Phytol ; 223(2): 575-581, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30920664

RESUMEN

Methylation of DNA is an epigenetic mechanism for the control of gene expression. Alterations in the regulatory pathways involved in the establishment, perpetuation and removal of DNA methylation can lead to severe developmental alterations. Our understanding of the mechanistic aspects and relevance of DNA methylation comes from remarkable studies in well-established angiosperm plant models including maize and Arabidopsis. The study of plant models positioned at basal lineages opens exciting opportunities to expand our knowledge on the function and evolution of the components of DNA methylation. In this Tansley Insight, we summarize current progress in our understanding of the molecular basis and relevance of DNA methylation in the liverwort Marchantia polymorpha.


Asunto(s)
Metilación de ADN/genética , Marchantia/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Marchantia/crecimiento & desarrollo , Modelos Biológicos , ARN de Planta/metabolismo
20.
J Plant Res ; 132(2): 197-209, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30840209

RESUMEN

The evolution of plants on land required adaptation to UV radiation and dry environments, and involved the appearance and/or rewiring of genetic connections, known as gene regulatory networks (GRNs), which consist of one or more transcription factors (TFs). The liverwort, Marchantia polymorpha, is a basal land plant, with a recently sequenced genome. The number of genes encoding basic helix-loop-helix (bHLH) family members is considerably higher in M. polymorpha than in charophyte green algae, suggesting the contribution of bHLH proteins to the evolution of GRNs associated with the adaptation of plants to land. Although an understanding of the evolutionary aspects of GRNs is fundamental for elucidating the mechanisms of environmental adaptation, the evolution of GRNs that led to land adaptation in plants remains poorly understood. In this study, we isolated a single gene encoding a IIIf bHLH TF from M. polymorpha, MpBHLH12. Transgenic M. polymorpha constitutively overexpressing MpBHLH12 showed smaller and fewer gemma cups than wild type, suggesting that MpBHLH12 is involved in the regulation of morphological development. Transcriptomic analysis of MpBHLH12 overexpressor (MpBHLH12ox) lines revealed an overlap with the GRN of MpMYB14, which regulates the biosynthesis of anthocyanins and phenolic compounds. However, MpBHLH12ox did not show anthocyanin accumulation. Results of the transient reporter assay suggest that MpBHLH12 could function in repression rather than activation. Our findings suggest that although the IIIf bHLH MpBHLH12 shows highest amino acid similarity with IIIf bHLH clade and is involved in developmental process and partly biosynthesis of phenolic compounds in M. polymorpha like Arabidopsis IIIf bHLH, the GRN involving MpBHLH12 would be distinct one from those of the IIIf bHLH TFs of seed plants.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Redes Reguladoras de Genes , Marchantia/genética , Transcriptoma , Adaptación Biológica , Antocianinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Evolución Biológica , Marchantia/crecimiento & desarrollo , Marchantia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...